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Rectifying Proposal Failures in Metropolis Light Transport
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Fig. 1. The Breakfast scene. Equal-time comparison. Left: Image rendered with MMLT, where more than 37% of the traced paths are proposal failure paths.
Middle: Excluding proposal failure paths from the states of Markov chain, our method produces higher quality results with the same computation. If our
method is used to produce the same RMSE/quality result as MMLT does, in general, about a third of the computation will be saved.

Metropolis light transport (MLT) rendering algorithms rely on path muta-
tions to explore the sample spaces. Mutated paths that carry zero radiance,
such as those blocked by scene geometry, can significantly slow down the
convergence of these algorithms. We call such zero-contribution paths pro-
posal failures. We present a simple modification of MLT, Rectified Proposal
Failure MLT (PFMLT), which excludes path duplications caused by proposal
failures. PFMLT better approximates the original path distributions espe-
cially for high proposal rejection rates, and can be easily integrated with
various MLT algorithms. We analyze our method with numerical models,
and demonstrate better quality/performance trade-offs than Multiplexed
MLT (MMLT) and Reversible Jump MLT (RJMLT) with various scenes of
challenging lighting, geometry, and material conditions.

CCS Concepts: • Mathematics of computing→ Metropolis-Hastings algo-
rithm; • Computing methodologies→ Ray tracing.

Additional Key Words and Phrases: Monte Carlo, rendering, sampling
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1 INTRODUCTION
Physically-based rendering is widely used to produce realistic im-
ages, but solving the rendering equation [Kajiya 1986] remains
challenging, especially for scenes with complex lighting, geome-
try, or material. Metropolis Light Transport (MLT) algorithms can
efficiently explore such challenging scenes by path mutations [Bit-
terli et al. 2018; Hachisuka et al. 2014; Hanika et al. 2015; Jakob
and Marschner 2012; Kelemen et al. 2002; Li et al. 2015; Otsu et al.
2018, 2017; Pantaleoni 2017; Veach 1997]. However, the percentage
of zero-radiance paths, which we call proposal failures, in those
algorithms can be high and thus slow down the rate of convergence.

To address this issue, we propose Rectified Proposal Failure MLT
(PFMLT), which distinguishes proposal failure paths from normal
proposed paths and excludes them from the states of Markov chain.
Our method can provide better quality/performance trade-offs (Fig-
ure 1), is simple to implement, and can be integrated with various
MLT algorithms. We provide analysis, examples, and comparisons
with Multiplexed MLT (MMLT) [Hachisuka et al. 2014] and Re-
versible Jump MLT (RJMLT) [Bitterli et al. 2018].
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2 RELATED WORK
Light Transport Simulation. Light transport equation was first de-

scribed by [Kajiya 1986]. [Veach 1997] presented that light transport
simulation can be expressed as the integral:

Ij =

∫
Ω
hj (x̄)f (x̄)dµ(x̄) (1)

, where Ij is the intensity of the j-th pixel of image, Ω =
⋃∞
k=1 Ωk is

the space of light paths of all finite lengths k, x̄ is a light path, hj ()
is the reconstruction filter that selects out all the light paths that
contribute to the j-th pixel, f is the contribution of x̄ and µ is the
area measure.

Monte Carlo Integration. The integral in Equation (1) is infinite-
dimensional because of the length of x̄ can be infinite, which cannot
be solved analytically. Monte Carlo numerical integration methods
provide one solution to this kind of problem. The Monte Carlo
integration estimator of Equation (1) is:

Ij ≈ Îj =
1
N

N∑
i=1

hj (x̄
(i))f (x̄ (i))

p(x̄ (i))
(2)

, where x̄ (i) is the i-th independently sampled light path, p(x̄ (i)) is
the probability density of the sample and N is the total number of
samples.

In order to decrease the variance of the estimator, p(x̄ (i)) should
be approximately proportional to f (x̄ (i)). Unfortunately, f (x̄ (i)) is a
spectrally valued function, and thus there is no unambiguous notion
of what it means to generate samples proportional to f (x̄ (i)). To
address this issue, a scalar contribution function f ∗ is defined as
the luminance of the path contribution f . Intuitively, p(x̄ (i)) can be
f ∗(x̄ (i))/b (where b is the normalization constant

∫
Ω
f (x̄)dµ(x̄)). So,

Equation (2) can be presented as:

Ij ≈ Îj =
b

N

N∑
i=1

hj (x̄
(i))f (x̄ (i))

f ∗(x̄ (i))
(3)

Now, we face two problems: calculating b and geting samples
from p(x̄ (i)) that is f ∗(x̄ (i))/b. The value b is typically estimated
with another independent rendering algorithm such as bidirectional
path tracing ([Lafortune and Willems 1993, 1996; Veach and Guibas
1994]). Then, the only problem is how to do the sampling.

Path-Space MLT.. The remaining problem in Equation (3) is how
to get sample x̄ (i) in path space Ω with probability density p(x̄ (i))
proportional to it’s function value f (x̄ (i)), which is so-called impor-
tance sampling. Veach[Veach and Guibas 1997] originally introduced
Metropolis-Hastings (MH) sampling ([Hastings 1970; Metropolis
et al. 1953]) into computer graphics and proposed a novel rendering
algorithm, Metropolis Light Transport (MLT).

Themathematical foundation ofMH sampling is building aMarkov
chain whose stationary distribution is exactly the target distribu-
tion. After reaching its stationary distribution, every subsequent
mutation state of the Markov chain is a valid sample of the target
distribution. However, it’s never easy to know when the stationary
is reached. MH sampling provides a practically way to solve this
problem. It generates a set of samples from a non-negative function
f that is distributed proportionally to f ′s value without waiting for

the stationary and whithout requiring the evaluation of b in two
steps:
• Proposal. A new proposal path ȳ is obtained from current path
x̄ by a mutation kernel Q(ȳ |x̄).
• Acceptance-Rejection. Acceptance rate α is calculated:

α(ȳ |x̄) = min
(
1, f
∗(ȳ)Q(x̄ |ȳ)

f ∗(x̄)Q(ȳ |x̄)

)
(4)

. Then accept the proposal path ȳ with the probability α ,
otherwise reject it.

Mutation kernel Q is the key factor increasing acceptance rate
and computation efficiency. In rendering algorithms, mutation ker-
nel Q actually is the strategy to get proposal paths. The original
MLT designs three mutation strategies targeting specific families
of light paths, such as caustics or paths containing sequences of
specular-diffuse-specular interactions. Some other mutation strate-
gies have been developed in variants of path-space MLT, such
as MEMLT [Jakob and Marschner 2012] for specular interactions,
HSLT [Hanika et al. 2015] for rough materials, and GeoMLT [Otsu
et al. 2018], which incorporates visibility into mutation strategies
of MCMC rendering.

Primary Sample Space MLT.. Mutating in path space is not sym-
metric, which means that Q(x̄ |ȳ) != Q(ȳ |x̄). This makes implement-
ing these rendering algorithms a significant undertaking and makes
debugging a notorious task. [Kelemen et al. 2002] presented a new
MLT-type algorithm, Primary Sample Space MLT (PSSMLT), whose
mutation strategy works in the unit cube of pseudo-random num-
bers, which is symmetric and easy to implement. The unit cube is
called Primary Sample SpaceU .
PSSMLT converts random numbers ū into light path x̄ by path

sampling. x̄ can be thought of as being mapped from ū by the inverse
cumulative distribution function P−1(ū), where P(ū) =

∫ ū
0 p(ū ′)dū ′.

That is: x̄ = P−1(ū). For the brevity of notation, we define:

C(x̄) =
f (x̄)

p(x̄)

Ĉ(ū) = C(P−1(ū)) = C(x̄)

p̂(ū) = p(P−1(ū)) = p(x̄)

ĥj (ū) = hj (P
−1(ū)) = hj (x̄)

Then, in primary sample space, Equation (1) can be expressed as:

Ij =

∫
U
ĥj (ū)Ĉ(ū)dū (5)

Like Equation (3), the Monte Carlo integration estimator of Equa-
tion (5) can be presented as:

Ij ≈ Îj =
b

N

N∑
i=1

ĥj (ū
(i))Ĉ(ū(i))

Ĉ∗(ū(i))
(6)

, where Ĉ∗ is the luminance of the importance function Ĉ . Mutating
in primary sample space is symmetric. That is Q(ū |v̄) = Q(v̄ |ū),
which makes implementing PSSMLT much easier, and which also
avoids the computation of the transition probabilities altogether. So,

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: July 2019. Submission ID: papers_134. 2019-01-12 14:56. Page 2 of 1–11.
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the calculation of acceptance rate can be simplified as:

α(v̄ |ū) = min
(
1, Ĉ
∗(v̄)

Ĉ∗(ū)

)
(7)

, where v̄ is the proposal state of ū in primary sample space.
PSSMLT makes the integrand much flatter, and increases the

average acceptance rate and therefore reduces the variance. The
generality of PSSMLT has led to a lot of applications, such as [Gruson
et al. 2017; Hachisuka and Jensen 2011; Hoberock and Hart 2010;
Kitaoka et al. 2009; Šik et al. 2016]. As mentioned before, the method
of conversion from random numbers ū into light path x̄ is path
sampling. Actually, PSSMLT adopts bidirectional path tracing to
do the path sampling. Bidirectional path tracing produces many
paths from a single primary sample by using different connection
strategies to connect camera sub-path and light sub-path. And then,
the connected path of maximum luminance is selected as the final
proposal light path. Unfortunately, the process of finding the path
of maximum luminance is not efficient.

MultiplexedMLT.. In order to solve the efficient problem of PSSMLT,
[Hachisuka et al. 2014] presented an extension to PSSMLT called
Multiplexed Metropolis Light Transport (MMLT) which combines
MCMC algorithm with Multiple Importance Sampling [Veach 1997].
Instead of always implementing all BDPT connection strategies and
finding the path of maximum luminance, the algorithm chooses a
single strategy according to an extra random number and returns its
contribution scaled by the inverse discrete probability of the choice.
The additional random number used for strategy selection can be
mutated in the same way as the other components of ū in primary
sample space. The Monte Carlo Integration estimator is generalized
as:

Ij ≈ Îj =
M∑
t=1

b

Nt

Nt∑
i=1

ĥj (ū
(i,t ))ŵt (ū

(i,t ))Ĉ(ū(i,t ))

Ĉ∗(ū(i,t ))
(8)

, where, t is determined by the extra state dimension and is used
to choose sample technique, and ŵt is a weighting function for
any given path. The extension of the extra state dimension for
choosing sample technique results that every mutation may change
both random numbers from ū to v̄ and sample technique from t to
t ′. So, based on Equation (7), the calculation of acceptance rate is
generalized:

α((v̄, t ′)|(ū, t)) = min
(
1,
ŵt ′(v̄)Ĉ

∗
t ′(v̄)

ŵt (ū)Ĉ
∗
t (ū)

)
(9)

This generalization produces the practical effect that the Metrop-
olis sampler mainly focus on more effective strategies that leads to
greater MIS-weighted contributions to the final image. Furthermore,
the individual iterations of every Markov chain are much more
efficient since they only execute a single connection strategy. Based
on MMLT’s approach, some developments have been made, such as
H2MC[Li et al. 2015], which utilizes Hamiltonian Monte Carlo to
adaptively control the shape of the transition kernels.

Bridging Path-Space and Primary-Sample-Space. In order to com-
bine the flexibility of mutation strategies of path space MLT with
the simplicity and efficiency of primary sample space MLT, several

methods have been developed to bridge the two state spaces by us-
ing invertible mappings to transform samples between them, such
as [Bitterli et al. 2018; Otsu et al. 2017; Pantaleoni 2017].

Analysis and Problem Statement. Generally, the improvements in
MLT-type rendering algorithms can be classified into three cate-
gories. First, developments of mutation strategies in path space, such
as MEMLT [Jakob and Marschner 2012] for specular interactions,
HSLT [Hanika et al. 2015] for rough materials, and GeoMLT [Otsu
et al. 2018], which incorporates visibility into mutation strategies.
Second, developments of mutation strategies in primary sample
space, such as MMLT and H2MC [Li et al. 2015]. Third, bridging
the two spaces, so that the developments of mutation strategies in
both spaces can be used in the same algorithm framework, such as
[Bitterli et al. 2018; Otsu et al. 2017; Pantaleoni 2017].
All of these efforts are put on variant mutation strategies to

increase the acceptance rate and to reduce the variance of their
different aim scene scenarios. However, the ratio of proposal fail-
ures in traced paths is still a serious problem. For MMLT-related
algorithms, things get worse, because they run many independent
Markov chains with fixed depth of path for each chain, which in-
creases the chance of confronting proposal failure paths.
Mathematically, given a constrained parameter space and an

unconstrained Markov chain, proposal failures occur. With respect
to this issue, [Robert 2013] presented that it is a correct method
to subsample the chain and exclude proposal failures. Also, even
though themethodworks as a low key accept-reject sampling, it may
be more efficient than the original Metropolis-Hastings algorithm
when the issue of proposal failures is serious. So, we introduce this
idea into MLT and present a simple modification of MLT, Rectified
Proposal Failure MLT (PFMLT), which excludes path duplications
caused by proposal failures.

3 OVERVIEW
The main idea of our method is distinguishing proposal failure
paths from normal proposal paths and then excluding them from
the states of Markov chain, so that speed up the convergence rate
of the Metropolis-Hastings sampler.

In Section 4, we propose Rectified Proposal Failure MCMC (PFM-
CMC), which simulates proposal failures by setting path radiance
value to 0 with probability pf and provides remedy for proposal fail-
ures. In Section 5, we combine PFMCMC with MMLT [Hachisuka
et al. 2014] and RJMLT [Bitterli et al. 2018], and compare qual-
ity/performance with various scenes.

4 METHOD
Our algorithm, PFMCMC, restricts focus to the case of proposal fail-
ure. PFMCMC is an extension of Metropolis Hastings (MH) [Hast-
ings 1970; Metropolis et al. 1953], one of the most popular, classical
MCMC algorithms. PFMCMC is summarized in Algorithm 1. We
aggregate some important terms of our notation in Table 1 for ref-
erence. From Algorithm 1, we can see that the basic structure of
PFMCMC is similar to MH’s. The major modification is that PFM-
CMC introduces probability pf to simulate proposal failure shown
the red part (line 4 to 7), and provides a remedy for the failure
situation in the blue part (line 8 to 11).
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Table 1. Notations.

Symbol Meaning
X Sample result set
X0 Initial sample
X ∗ Proposal sample
X j Current sample
X j+1 Next sample
f (X ∗) Function value of proposal sample
f (X j ) Function value of current sample
sTotalNum Set # of total proposal
rTotalNum Real # of total proposal
TotalRep Total # of repetition for proposal failure
j Proposal counter
pf Probability of proposal failure
α Acceptance rate

Require: initial values X0, sTotalNum, and failure possibility pf .
Ensure: output sample set X
1: for j ← 0; j < sTotalNum; j ← j + 1 do
2: Draw a proposal value X ∗ from X j
3: Calculate f (X ∗)
4: Draw v ∼U (0, 1).
5: if v < pf then
6: f (X ∗) ← 0
7: end if
8: if (f (X ∗) = 0) then
9: j ← j − 1
10: continue
11: end if
12: Calculate acceptance rate α . α = min

(
1, f (X

∗)

f (X j )

)
13: Draw u ∼U (0, 1).
14: if u < α then
15: X j+1 ← X ∗

16: else
17: X j+1 ← X j
18: end if
19: end for
20: return X

Algorithm 1. Rectified Proposal Failure MCMC (PFMCMC). This is an exten-
sion of MH sampling, which simulates proposal failures by setting function
value f (X j ) to 0 with failure probability pf (as shown in the red part) and
gives a special remedy to proposal failures (as shown in blue part). Note
that the red part is only for simulation (for methods with high pf ); the blue
part can be applied to all MCMC-based algorithms with path multations.

Proposal Failure Simulation. f (X j ) is the function of sample X j .
pf indicates the overall probability of proposal’s random failure.
Generally, the percentage of zero-contribution paths in MMLT for
our test scenes, like Figure 1, is between 35% and 65%. So we can set
pf at a value in [0.35, 0.65] to verify the effectiveness of PFMCMC.

Proposal Failure Remedy. The basic idea of the remedy for pro-
posal failures is excluding them from the states of Markov chain. To

be specific, as shown in the blue part (line 8 to 11), the first step is
detecting proposal failures, and the second step is shifting the sam-
ple counter j backward to exclude proposal failures. Here, we would
like to highlight two things. First of all, the remedy does nothing to
break the detailed balance, so our method is also unbiased. Then,
the remedy has a positive effect—denoising, and a negative effect—
under-sampling. In general, the effect of denoising surpasses the
effect of under-sampling, so the net effect is a better approximation
of the sample distribution, as exemplified in Figures 2 and 3.

4.1 Analysis
We illustrate the effect of PFMCMC with a 1D model based on a
normal distribution functionwith a probabilitypf of proposal failure.
The effect comparison of PFMCMC and MCMC is based on equal
sampling time. We use the total number of proposal rTotalNum as
an indicator of sampling overhead, which is more reliable because
of the elimination of influences of system performance. For MCMC,
rTotalNum equals to sTotalNum. For PFMCMC, rTotalNum is the
additive result of sTotalNum and TotalRep which is related to pf .

Parameter Setting. We are assuming that, for the normal distribu-
tion function, the mean is 3 and the standard deviation is 2. Con-
sidering that the percentage of proposal failure for most of scenes
rendered with MMLT locates in the interval [0.4, 0.6], we test two
cases with pf set at 0.4 and 0.6 respectively. For MCMC, sTotalNum
is set at 1600. For PFMCMC, in order to make rTotalNum close at
1600, sTotalNum setting is more complicate, which is affected by
pf : when pf is 0.4, we set sTotalNum at 960; when pf is 0.6, we set
sTotalNum at 690.

Results Analysis. Figure 2 demonstrates the sample results of
MCMC and PFMCMC. (a) and (c) show the results sampled with
the extension of MCMC, which includes failure simulation and no
remedy; (b) and (d) show the results sampled with the extension of
MCMC, which is our PFMCMC including both failure simulation
and remedy. We can see that PFMCMC gets better results than
MCMC does.

pf = 0.4 pf = 0.6

MCMC (reference) rTotalNum: 1600
RMSE: 0.006834

rTotalNum: 1600
RMSE: 0.008760

PFMCMC,
(similar rTotalNum)

rTotalNum: 1584
RMSE: 0.006370

rTotalNum: 1589
RMSE: 0.007728

PFMCMC,
(similar RMSE)

rTotalNum: 1383
RMSE: 0.006787

rTotalNum: 1262
RMSE: 0.008686

Table 2. Comparing MCMC with PFMCMC with average results of 100 runs
each. rTotalNum controls cost. Lower RMSE value means higher quality.

Because of the use of correlated samples, a single run of anMCMC
integrator may not be representative. We test every case for 100
times and average the corresponding results, which are recorded
in Table 2. As shown, PFMCMC provides better quality/efficiency
than MCMC under similar speed/quality.
As mentioned before, our method, exclusion of proposal fail-

ures, has a positive effect—denoising, and a negative effect—under-
sampling. In general, the effect of denoising surpasses the effect

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: July 2019. Submission ID: papers_134. 2019-01-12 14:56. Page 4 of 1–11.
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(a) MCMC, RMSE = 0.007173 (b) PFMCMC, RMSE = 0.004836
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6

(c) MCMC, RMSE = 0.008756 (d) PFMCMC, RMSE = 0.006296

Fig. 2. Sampling a 1D normal distribution under simulated proposal failures
with MCMC and PFMCMC. The total number of proposal is used as an
indicator of sampling overhead. All of these results are produced with equal
number of total proposals, 1600. The blue and red curves visualize the target
and sample distributions. The top and bottom rows correspond to different
pf values, while the left and right column show results sampled withMCMC
and PFMCMC. As expected, larger pf triggers larger errors, but PFMCMC
performs better than MCMC, as indicated by both the RMSE measurements
and the visualized distributions.

of under-sampling, so the net effect is a better approximation of
the sample distribution. As the number of samples increases, both
effects decrease. So, as shown in Figure 3, in the condition of a large
number of samples, like 102400, our method just produces almost
the same results as MCMC does. Also, our method shows less ad-
vantage in the case of lower rate of proposal failure. Fortunately,
in practice, we rarely take extremely large number of samples, and
our method can help cases of high rates of proposal failure.

5 IMPLEMENTATION
PFMCMC can be combined with different MLT-type algorithms

with mutation in primary sample space or path space. An exam-
ple demonstrated in this section is MMLT [Hachisuka et al. 2014].
MMLT improves rendering efficiency by selecting seed path with
probability proportion to its contribution to the final image. Fus-
ing MMLT with the idea of proposal failure remedy of PFMCMC
makes PFMLT even much more efficient than MMLT. For example,
rendering Breakfast scene in Figure 1 with PFMLT saves about 30
percent of the time to produce the same quality image as MMLT
does. Algorithm 2 shows the pseudocode of PFMLT.

Initialization. First, the same as MMLT, we sample a seed path
s̄ from Initial Path Set and calculate it’s depth k and contribution
f (x̄s ). The depth k should be emphasized here, like MMLT, all of
subsequent proposal paths are of the same depth as this seed path.

Fig. 3. Convergence comparisons for sampling the 1D normal distribution
with MCMC and PFMCMC. For the four cases, "pf =0.4, MCMC", "pf =0.4,
PFMCMC", "pf =0.6, MCMC", "pf =0.6, PFMCMC", we take 11 test points
for each. And for each test point, we calculate its average result of 100 runs.
From this plot, we can see: (1), As the number of samples increases, the
advantage of our method decreases. For example, in the condition of a large
number of samples, like 102400, our method produces almost the same
results as MCMC does. (2), Our method shows less advantage in the case
of lower rate of proposal failure. Fortunately, in practice, we rarely take
extremely large number of samples and we frequently meet the case of high
rate of proposal failure, so our method helps.

Seed path s̄ should be assigned to current path x̄ . sTotalNum can
be obtained by dividing total proposal number by total number
of Markov chains. Then, some special variables for implementing
the core idea of PFMCMC should be initiated. Proposal failure flag
IsFailure is initiated as 0.

Random Numbers Proposal. For MMLT, the same as PSSMLT, two
main steps are needed to draw a proposal ȳ from x̄ in path space.
Firstly, draw a proposal vector of random numbers v̄ from ū which
is the primary sample space counterpart of x̄ . Secondly, obtain ȳ by
path sampling in path space using the proposal vector of random
numbers v̄ . As to the first step, note that we apply normally dis-
tributed perturbations to each component of the vector of random
numbers. The advantage of sampling with a normal distribution
like this is that it naturally tries a variety of mutation sizes. It pref-
erentially makes small mutations that remain close to the current
state, which help locally explore the path space in small areas of
high contribution.

Path Sampling and Potential Failures. As mentioned in "Random
Numbers Proposal" part, the second step of path proposal is path
sampling. It is this step where proposal failures occur. The proposal
vector of random numbers v̄ has four main uses in path sampling.
First, one random number, vs , of v̄ is used to choose sample tech-
nique, so that t and s are determined. Second, a sub-vector, v̄camera ,
of v̄ , along with t , is used to sample a camera sub-path ȳcamera with
depth exactly being t . Third, a sub-vector, v̄l iдht , of v̄ , along with s ,
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Ensure: Accumulation of Path Contributions
1: Sample a seed path s̄ from Initial Path Set
2: Calculate k (the depth of s̄) and path contribution f (x̄s )
3: s̄ is used as current path x̄ : x̄ ← s̄ , f (x̄) ← f (x̄s )
4: IsFailure ← 0
5: for j ← 0; j < sTotalNum; j ← j + 1 do
6: Draw a proposal vector of random numbers v̄ from ū .
7: t ← int((k + 2)vs )
8: s ← (k + 1) − t
9: if !(ȳcamera ← SampleCameraSubpath(v̄camera , t )) then
10: IsFailure ← 1
11: end if
12: if !(IsFailure) then
13: if !(ȳl iдht ← SampleLightSubpath(v̄l iдht , s)) then
14: IsFailure ← 1
15: end if
16: end if
17: if !(IsFailure) then
18: if !(f (ȳ) ← Connect(ȳcamera , ȳl iдht , v̄connect )) then
19: IsFailure ← 1
20: end if
21: end if
22: if (IsFailure) then
23: j ← j − 1
24: IsFailure ← 0
25: continue
26: end if
27: IsFailure ← 0
28: Calculate acceptance rate α . α = min

(
1, L(f (ȳ))L(f (x̄ ))

)
29: Draw u ∼U (0, 1).
30: if u < α then
31: x̄ ← ȳ
32: end if
33: AccumulatePathContribution(f (x̄))
34: end for

Algorithm 2. PFMLT (Rectified Proposal Failure MLT). The blue part is the
simple remedy for proposal failures. If proposal failure paths are detected,
we exclude them from the states of Markov chain by shifting sample counter
j backward before getting into the step of calculating acceptance rate.

is used to sample a light sub-path ȳl iдht with depth exactly being s .
Fourth, a sub-vector, v̄connect , of v̄ is used to connect ȳcamera and
ȳl iдht to make a complete proposal path ȳ and to calculate proposal
path contribution f (ȳ).
Except for the first stage, the other three are of potential fail-

ures. In the sampling sub-path stages, the depth of camera sub-path
ȳcamera may not be t , or the depth of light sub-path ȳl iдht may
not be s , so failures happen. In the connecting stage, the connection
between the two sub-paths, ȳcamera and ȳl iдht , may be blocked,
which is a very high probability event. The existence of these fail-
ures is the very reason why PFMLT is much more efficient than
MMLT.

Failure Remedy. IsFailure is used to indicate whether any failure
has happened. If any failure is detected, the flag IsFailure is set to 1.

Note that if a failure has been detected earlier, the subsequent path
sampling programs are not necessary to run.

If proposal failure paths are detected, we exclude them from the
states of Markov chain by shifting sample counter j backward before
getting into the step of calculating acceptance rate, which is shown
in line 22 to line 26 of Algorithm 2.

Accept Probability. We used the same mutation function for get-
ting the vector of random numbers v̄ from ū as MMLT. Since these
mutations are all symmetric, transition probability density functions
are not needed to evaluate, the acceptance probability α is simply
the ratio of the luminosities of proposal path contribution f (ȳ) and
current path contribution f (x̄).

Contribution Accumulation. The same as MMLT, the scaling by
the reciprocal of the discrete probability density of the selected path
length as noted before, we also need to scale each contribution by
the number of techniques k + 2. This scaling corresponds to the fact
that the chain explores k + 2 different sub-spaces.

6 RESULTS
This section includes main results (Section 6.1) and extra results
(Section 6.2). In Section 6.1, we implement our method by extending
the system of PBRT, and we compare against MMLT implemented
in the same system. In Section 6.2, we extend both RJMLT and
MMLT in Tungsten [Bitterli 2017], a renderer that is a much simpler
and faster than PBRT, and we compare against MMLT and RJMLT
implemented in Tungsten.

6.1 Main Results
We implement our method by extending the system of PBRT, and
we compare against MMLT implemented in the same system. Five
scenes - Breakfast (1024×1024), Villa (1200×580), Bathroom (1280×
720), Bidir (768 × 576), Living Room (1280 × 720) - with different
geometry, lighting, and material configurations are rendered on
a Mac pro with Intel Core i5 at 2.7GHz. Villa scene reference is
rendered using MMLT in PBRT and the references of the other four
scenes are rendered with BDPT in PBRT. Rendering each of those
references costs several days. We set the maximum path length at 9
for Living Room scene and at 5 for the other four scenes.

Equal-time Comparison. We show the image comparison results
in Figures 1 and 4. To make equal-time comparisons between MMLT
and our method, we rendered all the five scenes. Because proposal
failure paths are thought of as extra overheads in our method, the
parameter of mutations per pixel should be set at a smaller value
than in MMLT, as show in column "Mutations Per Pixel" of Table 3.

In order to obtain the statistic data of these comparisons, we de-
fine some counters in Algorithm 2: TotalPaths is the total number
of paths traced; ExcludedPaths is the number of proposal failure
paths excluded from the states of Markov chain; FinalFailurePaths
is the number of final failure paths after remedy; AcceptancePaths
is the number of paths accepted. All of these counters should be
initialized to 0 before the beginning of rendering (line 5 of Algo-
rithm 2). In the Algorithm 2, we add some other code for statistics:
"TotalPaths ++;" at line 6; "ExcludedPaths ++;" at line 23; "i f (α <
0.000001)FinalFailurePaths ++;" at line 28; "AcceptancePaths ++;"
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at line 31. We use the following equations to calculate FailureRate
and AcceptanceRate .

FailureRate =
FinalFailurePaths

(TotalPaths − ExcludedPaths)

AcceptanceRate =
AcceptancePaths

(TotalPaths − ExcludedPaths)

These statistics are also recorded in Table 3.

Scenes Algorithms Mutations
Per Pixel

Failure
Rate

Acceptance
Rate RMSE

Breakfast MMLT 150 37.37% 49.38% 0.082572
Ours 100 0% 77.84% 0.069976

Villa MMLT 200 62.82% 32.39% 0.083772
Ours 80 0% 75.26% 0.070404

Bathroom MMLT 280 40.00% 57.00% 0.120891
Ours 150 0% 89.01% 0.103564

Bidir MMLT 75 37.40% 57.82% 0.067776
Ours 45 0% 90.18% 0.056806

Living Room MMLT 670 51.12% 45.07% 0.129880
Ours 200 0% 90.49% 0.102854

Table 3. Table of statistics of equal-time comparison ( 2 hours for Breakfast,
1.5 hours for Villa, 1 hour for Bathroom, 25 minutes for Bidir, and 110
minutes for Living Room). Because proposal failure paths are thought of as
extra overheads in our method, the parameter of mutations per pixel should
be set to a smaller value than in MMLT. We also show the comparisons of
failure rate, acceptance rate and RMSE for these scenes. From the table, we
can see that our method always produce better results (smaller RMSE) than
MMLT does.

Breakfast Scene. Figure 1 shows an equal-time (2 hours) compari-
son on the Breakfast Scene which is illuminated by two lamps. Part
of the scene, like the objects on the top of the desk, get direct illu-
mination, however, the lighting for objects under the desk or over
the lamps is much more complicated. From Figure 1 and table 3, we
can see that MMLT shows suboptimal performance because about
37.37% of the paths that were used to reconstruct image carried no
radiance. Giving special treatment to zero-contribution paths, our
method reduces the percentage to around 1.54% and exhibits much
better results with smaller RMSE. Our method distinguishes itself
in those difficult settings where a large fraction of all of the possible
proposal paths fail to carry any radiance in MMLT rendering, as
shown in the three insets of Figure 1.

Villa Scene. The first part of Figure 4 shows an equal-time (1.5
hours) comparison on the Villa scene with complex materials and a
difficult geometry configuration lit by outside environment daylight.
This is a challenging scene because of the hard-to-find specular-
diffuse-specular (SDS) light paths between the villa interior and the
near-specular glass windows. The reference rendered by MMLT
with 10000 mutations per pixel is still slightly noisy after several
days of computation. Also, from Figure 4 and table 3, we can see that
MMLT produces a lot of noises because more than 62.81% of the
paths that were used to reconstruct image were zero-contribution.
Our method considers zero-contribution proposal as failure and
gives special treatment to it. As a result, the percentage was reduced
to about 14.47 and higher quality image was obtained. If our method

is used to render the image with the same RMSE of 0.083772 like
MMLT does, more than 37% of the time will be saved.

Bathroom Scene. The second part of Figure 4 shows an equal-time
(1 hour) comparison on the Bathroom scene which contains several
different materials including diffuse, specular, and glossy. The scene
is illuminated with a large area light source directly visible from
the camera. Unlike the Villa scene, the major part of the scene
is directly illuminated by the light source. Even in such a simple
lighting situation, our method can still produce a better image than
MMLT does in equal time. If our method is used to render the image
with the same RMSE of 0.120981 like MMLT does, more than 45%
of the time will be saved.

Bidir Scene. The third part of Figure 4 shows an equal-time (25
minutes) comparison on the Bidir scene. The illumination resembles
the Breakfast scene whose part of objects get direct lighting and
other parts not. If our method is used to render the image with the
same RMSE of 0.067776 like MMLT does, about 28% of the time will
be saved.

Living Room Scene. The last part of Figure 4 shows an equal-
time (110 minutes) comparison on the Living Room scene. Light
coming from outside environment enter the room through glass
widows like the Villa scene does. Again, this kind of lighting makes
rendering the scene a challenging task. What’s more, the materials
of the Living Room scene are more complex. The floor, the table and
the paneling are made of substrate material, a layered model that
varies between glossy specular and diffuse reflection depending on
the viewing angle. The cups and the bottle on the table are glass.
Other objects like the big mirror and the brushed stainless-steel
lampshades also contribute to the complication of materials of the
scene. All of this result that more than 51.12% of all paths that were
used to reconstruct image in MMLT don’t carry any radiance. Again,
our method is even more efficient in rendering scenes with complex
material and lighting. If our method is used to render the image
with the same RMSE of 0.129880 like MMLT does, about 47% of the
time will be saved.

MMLT A B C D E F
20 40 85 170 340 670

Ours O P Q R S T
10 20 35 75 150 310

Table 4. Parameter settings of mutations per pixel for convergence comparison.
We used ABCDEF and OPQRST to label the resulting images rendered by
MMLT and our method respectively as in Figure 5a.

Convergence Comparison. To make our method more convincing,
we did a sequence of comparisons with different computations and
compared the convergence ofMMLT and ourmethod. Themutations
per pixel of the images rendered with similar timewere set as Table 4.
The resulting comparison images were shown in Figure 5a. Based
on the comparison images and their error images in Figure 5a, we
can see that our method converges much faster than MMLT does.
We also calculated the RMSEs of each of these images and exhibited
them in line chart as shown in Figure 5b. As the blue dash lines
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Fig. 4. Equal-time comparisons. These challenging scenes, Villa, Bathrooom, Bidir and Living Room, are of various complex material, lighting and geometry.
RMSE is used as the indicator of image quality. Our method always produce better results, with smaller RMSE, than MMLT does.
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Fig. 5. Convergence comparisons for the Living Room scene. Based on the comparison images and their error images in (a), we can see that our method converges
much faster than MMLT does. The RMSEs of each of these images are exhibited in line chart as (b). As the blue dash lines show, the RMSE of image R rendered
with our method is slightly smaller than the RMSE of image E rendered with MMLT, but the rendering time of image R is just about half of image E. Also, as
the orange dash lines show the comparison the RMSE of image S and image F, our method saves even bigger ratio of time.

mark in Figure 5b, the RMSE of image R rendered with our method
is slightly smaller than the RMSE of image E rendered with MMLT,
but the rendering time of image R is just about half of image E. Also,
as the orange dash lines show the comparison the RMSE of image S
and image F, our method saves even bigger ratio of time. Thus, the
higher same-quality of images rendered by MMLT and our method,
the bigger ratio of time will be saved by our method.

6.2 Extra Results
In order to further verify the effectiveness of our method and the
fact that other MLT-type algorithms can be easily extended with
our method, we now compare RJMLT [Bitterli et al. 2018] with our
method. We extend both RJMLT and MMLT in Bitterli’s original
source code, Tungsten [Bitterli 2017], a renderer that is a much sim-
pler and faster than PBRT, and get two new algorithms, RJMLT+PF
and MMLT+PF ("PF" means Rectified Proposal Failure). Considering
that the random seeds used in RJMLT are not fixed, the result of any
single run of RJMLT may not be representative, so we use average
behavior of many times of rendering with exactly same settings
to do comparison test with other algorithms, which is why we do
not include RJMLT in all of tests of the prior scenes as shown in
Figure 4.

Here, we compare equal-time images of the Glass-Of-Water scene
rendered with the four algorithms in Tungsten: MMLT, RJMLT,
MMLT+PF, RJMLT+PF. We set the maximum path length at 15.
Expected results should be: MMLT+PF is better than MMLT, and
RJMLT+PF is better than RJMLT. First, we produce the two five-
minute images of MMLT and MMLT+PF. (Five-minute images are
of relatively high quality because of the fact that Tungsten is much
simpler and faster than PBRT.) We find the parameters of RJMLT
and RJMLT+PF to produce five-minute images, run RJMLT and
RJMLT+PF with the parameters 50 times to produce 50 images re-
spectively, and calculate the average RMSEs of RJMLT and RJMLT+PF
with their own 50 images respectively. The Results are shown in Fig-
ure 6. For RJMLT and RJMLT+PF, while the two images are specially

chosen from their own 50 images, which may not be representa-
tive, the RMSEs are the average of 50 results, which is reliable. In
this scene, based on the RMSEs, we can see that: both RJMLT and
MMLT+PF are better than MMLT; RJMLT+PF is the best (of course
better than RJMLT); in particular, we get a bonus:MMLT+PF is better
than RJMLT, which means that PF makes MMLT not just better than
MMLT, but also better than RJMLT.

7 LIMITATIONS AND FUTURE WORK
As a MLT-type rendering algorithm, generally, our method is also
only good at rendering challenging scenes which contain complex
materials and lighting. Like other adaptive MLT-type algorithms,
such asMEMLT [Jakob and Marschner 2012],H2MC [Li et al. 2015],
HSLT [Hanika et al. 2015] and GeoMLT [Otsu et al. 2018], extra
computations are needed to address challenging parts of scenes. So,
the number of mutations per pixel that can be finished in equal time
as non-adaptive algorithms decreases, which may slightly affect the
rendering of simple parts of the same scene. Our method cannot
change/improve the original nature of the MLT-type algorithm that
is extended with our method. For example, RJMLT+PF inherited the
nature that the random seeds used are not fixed from RJMLT, which
means that the result of any single run of RJMLT+PF may also not
be representative, so average behavior of many times of rendering
with exactly same settings must be used to show its effectiveness.

Providing remedies to minimize the impact of proposal failure
without modifying mutation strategies is a new direction to improve
the efficiency of MLT-type algorithms. We just presented a simple
remedy in this paper, and we believe that many more efficient and
sophisticated remedies can be developed to further decrease the
serious impact caused by proposal failures in the future research.
Considering that MCMC is widely used in various fields, the idea
of remedy for proposal failures can be effectively introduced into
these fields.

REFERENCES
Benedikt Bitterli. 2017. Tungsten Source Code. https://github.com/tunabrain/tungsten.
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